MATH SOLVE

2 months ago

Q:
# What is the abscissa of the midpoint of the line segment whose endpoints are (5√2,2√3) and (√2,2√3)

Accepted Solution

A:

let

A------> (5√2,2√3)

B------> (√2,2√3)

we know that

the abscissa and the ordinate are respectively the first and second coordinate of a point in a coordinate system

the abscissa is the coordinate x

step 1

find the midpoint

ABx------> midpoint AB in the coordinate x

ABy------> midpoint AB in the coordinate y

ABx=[5√2+√2]/2------> 6√2/2-----> 3√2

ABy=[2√3+2√3]/2------> 4√3/2-----> 2√3

the midpoint AB is (3√2,2√3)

the answer is

the abscissa of the midpoint of the line segment is 3√2

see the attached figure

A------> (5√2,2√3)

B------> (√2,2√3)

we know that

the abscissa and the ordinate are respectively the first and second coordinate of a point in a coordinate system

the abscissa is the coordinate x

step 1

find the midpoint

ABx------> midpoint AB in the coordinate x

ABy------> midpoint AB in the coordinate y

ABx=[5√2+√2]/2------> 6√2/2-----> 3√2

ABy=[2√3+2√3]/2------> 4√3/2-----> 2√3

the midpoint AB is (3√2,2√3)

the answer is

the abscissa of the midpoint of the line segment is 3√2

see the attached figure